Conference paper

Capacity of asynchronous random-access scheduling in wireless networks

View publication


We study the throughput capacity of wireless networks which employ (asynchronous) random-access scheduling as opposed to deterministic scheduling. The central question we answer is: how should we set the channel-access probability for each link in the network so that the network operates close to its optimal throughput capacity? We design simple and distributed channel-access strategies for random-access networks which are provably competitive with respect to the optimal scheduling strategy, which is deterministic, centralized, and computationally infeasible. We show that the competitiveness of our strategies are nearly the best achievable via random-access scheduling, thus establishing fundamental limits on the performance of randomaccess. A notable outcome of our work is that random access compares well with deterministic scheduling when link transmission durations differ by small factors, and much worse otherwise. The distinguishing aspects of our work include modeling and rigorous analysis of asynchronous communication, asymmetry in link transmission durations, and hidden terminals under arbitrary link-conflict based wireless interference models. © 2008 IEEE.