About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ESEC/FSE 2019
Conference paper
Black box fairness testing of machine learning models
Abstract
Any given AI system cannot be accepted unless its trustworthiness is proven. An important characteristic of a trustworthy AI system is the absence of algorithmic bias. 'Individual discrimination' exists when a given individual different from another only in 'protected attributes' (e.g., age, gender, race, etc.) receives a different decision outcome from a given machine learning (ML) model as compared to the other individual. The current work addresses the problem of detecting the presence of individual discrimination in given ML models. Detection of individual discrimination is test-intensive in a black-box setting, which is not feasible for non-trivial systems. We propose a methodology for auto-generation of test inputs, for the task of detecting individual discrimination. Our approach combines two well-established techniques - symbolic execution and local explainability for effective test case generation. We empirically show that our approach to generate test cases is very effective as compared to the best-known benchmark systems that we examine.