About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
EDBT 2022
Conference paper
Bipartite Graph Matching Algorithms for Clean-Clean Entity Resolution: An Empirical Evaluation
Abstract
Entity Resolution (ER) is the task of finding records that refer to the same real-world entities. A common scenario is when entities across two clean sources need to be resolved, which we refer to as Clean-Clean ER. In this paper, we perform an extensive empirical evaluation of 8 bipartite graph matching algorithms that take in as input a bipartite similarity graph and provide as output a set of matched entities. We consider a wide range of matching algorithms, including algorithms that have not previously been applied to ER, or have been evaluated only in other ER settings. We assess the relative performance of the algorithms with respect to accuracy and time efficiency over 10 established, real datasets, from which we extract >700 different similarity graphs. Our results provide insights into the relative performance of these algorithms and guidelines for choosing the best one, depending on the data at hand.