Jiajin Zhang, Hanqing Chao, et al.
MICCAI 2023
Adversarial machine learning defenses have primarily been focused on mitigating static, white-box attacks. However, it remains an open question whether such defenses are robust under an adaptive black-box adversary. In this paper, we specifically focus on the black-box threat model and make the following contributions: First we develop an enhanced adaptive black-box attack which is experimentally shown to be ≥ 30 % more effective than the original adaptive black-box attack proposed by Papernot et al. For our second contribution, we test 10 recent defenses using our new attack and propose our own black-box defense (barrier zones). We show that our defense based on barrier zones offers significant improvements in security over state-of-the-art defenses. This improvement includes greater than 85% robust accuracy against black-box boundary attacks, transfer attacks and our new adaptive black-box attack, for the datasets we study. For completeness, we verify our claims through extensive experimentation with 10 other defenses using three adversarial models (14 different black-box attacks) on two datasets (CIFAR-10 and Fashion-MNIST).
Jiajin Zhang, Hanqing Chao, et al.
MICCAI 2023
Shaokai Ye, Kaidi Xu, et al.
ICCV 2019
Yu-Lin Tsai, Chia-Yi Hsu, et al.
ICLR 2021
Zhi-yi Chin, Chieh-ming Jiang, et al.
ICML 2024