About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Automatic Synthesis of Fine-Motion Strategies for Robots
Abstract
Active compliance enables robots to carry out tasks in the presence of significant sensing and control errors. Compliant motions are quite difficult for humans to specify, however. Furthermore, robot programs are quite sensitive to details of geometry and to error characteristics and must, therefore, be constructed anew for each task. These factors motivate the search for automatic synthesis tools for robot program ming, especially for compliant motion. This paper describes a formal approach to the synthesis of compliant-motion strategies from geometric descriptions of assembly operations and explicit estimates of errors in sensing and control. A key aspect of the approach is that it provides criteriafor correct ness of compliant-motion strategies. © 1984, Sage Publications. All rights reserved.
Related
Conference paper
Sample efficient active learning of causal trees
Conference paper