About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SIGIR Forum (ACM Special Interest Group on Information Retrieval)
Paper
Automatic query refinement using lexical affinities with maximal information gain
Abstract
This work describes an automatic query refinement technique, which focuses on improving precision of the top ranked documents. The terms used for refinement are lexical affinities (LAs), pairs of closely related words which contain exactly one of the original query terms. Adding these terms to the query is equivalent to re-ranking search results, thus, precision is improved while recall is preserved. We describe a novel method that selects the most "informative" LAs for refinement, namely, those LAs that best separate relevant documents from irrelevant documents in the set of results. The information gain of candidate LAs is determined using unsupervised estimation that is based on the scoring function of the search engine. This method is thus fully automatic and its quality depends on the quality of the scoring function. Experiments we conducted with TREC data clearly show a significant improvement in the precision of the top ranked documents.