About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Computational Physics
Paper
Artificial intelligence for accelerating time integrations in multiscale modeling
Abstract
We developed a novel data-driven Artificial Intelligence-enhanced Adaptive Time Stepping algorithm (AI-ATS) that can adapt timestep sizes to underlying biophysical dynamics. We demonstrated its values in solving a complex biophysical problem, at multiple spatiotemporal scales, that describes platelet dynamics in shear blood flow. In order to achieve a significant speedup of this computationally demanding problem, we integrated a framework of novel AI algorithms into the solution of the platelet dynamics equations. Our framework involves recurrent neural network-based autoencoders by the Long Short-Term Memory and the Gated Recurrent Units as the first step for memorizing the dynamic states in long-term dependencies for the input time series, followed by two fully-connected neural networks to optimize timestep sizes and step jumps. The computational efficiency of our AI-ATS is underscored by assessing the accuracy and speed of a multiscale simulation of the platelet with the standard time stepping algorithm (STS). By adapting the timestep size, our AI-ATS guides the omission of multiple redundant time steps without sacrificing significant accuracy of the dynamics. Compared to the STS, our AI-ATS achieved a reduction of 40% unnecessary calculations while bounding the errors of mechanical and thermodynamic properties to 3%.