About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
EMNLP 2020
Conference paper
ARES: A Reading Comprehension Ensembling Service
Abstract
We introduce ARES (A Reading Comprehension Ensembling Service): a novel Machine Reading Comprehension (MRC) demonstration system which utilizes an ensemble of models to increase F1 by 2.3 points. While many of the top leaderboard submissions in popular MRC benchmarks such as the Stanford Question Answering Dataset (SQuAD) and Natural Questions (NQ) use model ensembles, the accompanying papers do not publish their ensembling strategies. In this work, we detail and evaluate various ensembling strategies using the NQ dataset. ARES leverages the CFO (Chakravarti et al., 2019) and ReactJS distributed frameworks to provide a scalable interactive Question Answering experience that capitalizes on the agreement (or lack thereof) between models to improve the answer visualization experience.