About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
APS March Meeting 2023
Talk
Applying the Variational Principle to Quantum Field Theory with Neural-Networks
Abstract
Physicists dating back to Feynman have lamented the challenges of applying the variational principle to quantum field theories, most notably evaluating and optimizing expectation values of a quantum field state. In the context of non-relativistic quantum field theories, this approach requires one to parameterize and optimize over the infinitely many n-particle wave functions comprising the state's Fock space representation, a seemingly daunting task. In this work, we introduce a variational ansatz to enable the application of the variational principle to 1D bosonic quantum field theories directly in the continuum. Our ansatz is a neural-network quantum state, and uses the Fock space representation to model a quantum field state as a superposition of n-particle wave functions, each of which is parameterized by a common neural-network architecture that is both permutation-invariant and able to accept an arbitrary number of arguments. We develop a novel algorithm for variational Monte Carlo in Fock space and employ it on our ansatz to approximate ground states of the Lieb-Liniger model, the Calogero-Sutherland model, and a regularized Klein-Gordon model. Our ansatz can be seen as the neural-network-based analog of continuous matrix product states, which have traditionally been deployed on 1D field theories but struggle on inhomogenous systems and long-range interactions. The utility of our ansatz lies in its flexibility and broad applicability to such systems, providing a powerful new tool for probing quantum field theories.