About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE TC
Paper
Analytic modeling of clustered RAID with mapping based on nearly random permutation
Abstract
A Redundant Array of Independent Disks (RAID) of G disks provides protection against single disk failures by adding one parity block for each G - 1 data blocks. In a clustered RAID, the G data/parity blocks are distributed over a cluster of C disks (C > G), thus reducing the additional load on each disk due to a single disk failure. However, most methods proposed for implementing such a mapping do not work for general C and G values. In this paper, we describe a fast mapping algorithm based on almost-random permutations. An analytical model is constructed, based on the queue with a permanent customer, to predict recovery time and read/write performance. The accuracy of the results derived from this model is validated by comparing with simulations. Our analysis shows that clustered RAID is significantly more tolerant of disk failure than the basic RAID scheme. Both recovery time and performance degradation during recovery are substantially reduced in clustered RAID; moreover, these gains can be achieved using fairly small C/G ratios. ©1996 IEEE.