About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICML 2017
Conference paper
Algorithms for ℓp low-rank approximation
Abstract
We consider the problem of approximating a given matrix by a low-rank matrix so as to minimize the entry-wise ℓp-approximation error, for any P ≥ 1; the case p = 2 is the classical SVD problem. We obtain the first provably good approximation algorithms for this version of low-rank approximation that work for every value of p ≥ 1, including p = σ. Our algorithms are simple, easy to implement, work well in practice, and illustrate interesting tradeoffs between the approximation quality, the running time, and the rank of the approximating matrix.