About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IPDPS 2017
Conference paper
Accelerating Spark Datasets by Inlining Deserialization
Abstract
Apache Spark is a framework for distributed computing that supports the map-reduce programming model. The SQL module of Spark contains Datasets, i.e., distributed collections of records stored in a serialized low-level format in a manually managed chunk of memory. However, the functions users provide to the map-reduce computations expect Java objects. Datasets perform an additional deserialization step beforehand to support the user-provided function, which increases the overhead. We tackled this problem by replacing map functions with their counterparts that accepted the serialized data. This allowed us to skip the unnecessary part of deserialization and achieve faster data processing speeds.