About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Parallel Computing
Paper
A scalable iterative dense linear system solver for multiple right-hand sides in data analytics
Abstract
We describe Parallel-Projection Block Conjugate Gradient (PP-BCG), a distributed iterative solver for the solution of dense and symmetric positive definite linear systems with multiple right-hand sides. In particular, we focus on linear systems appearing in the context of stochastic estimation of the diagonal of the matrix inverse in Uncertainty Quantification. PP-BCG is based on the block Conjugate Gradient algorithm combined with Galerkin projections to accelerate the convergence rate of the solution process of the linear systems. Numerical experiments on massively parallel architectures illustrate the performance of the proposed scheme in terms of efficiency and convergence rate, as well as its effectiveness relative to the (block) Conjugate Gradient and the Cholesky-based ScaLAPACK solver. In particular, on a 4 rack BG/Q with up to 65,536 processor cores using dense matrices of order as high as 524,288 and 800 right-hand sides, PP-BCG can be 2x-3x faster than the aforementioned techniques.