About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
WSC 2003
Conference paper
A reinforcement learning approach to production planning in the fabrication/fulfillment manufacturing process
Abstract
We have used Reinforcement Learning together with Monte Carlo simulation to solve a multi-period production planning problem in a two-stage hybrid manufacturing process (a combination of build-to-plan with build-to-order) with a capacity constraint. Our model minimizes inventory and penalty costs while considering real-world complexities such as different component types sharing the same manufacturing capacity, multi-end-products sharing common components, multi-echelon bill-of-material (BOM), random lead times, etc. To efficiently search in the huge solution space, we designed a two-phase learning scheme where "good" capacity usage ratios are first found for different decision epochs, based on which a detailed production schedule is further improved through learning to minimize costs. We will illustrate our approach through an example and conclude the paper with a discussion of future research directions.