About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE TKDE
Paper
A myopic approach to ordering nodes for parameter elicitation in Bayesian belief networks
Abstract
Building Bayesian belief networks in the absence of data involves the challenging task of eliciting conditional probabilities from experts to parameterize the model. In this paper, we develop an analytical method for determining the optimal order for eliciting these probabilities. Our method uses prior distributions on network parameters and a novel expected proximity criteria, to propose an order that maximizes information gain per unit elicitation time. We present analytical results when priors are uniform Dirichlet; for other priors, we find through experiments that the optimal order is strongly affected by which variables are of primary interest to the analyst. Our results should prove useful to researchers and practitioners involved in belief network model building and elicitation. © 1989-2012 IEEE.