About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
KDD 2001
Conference paper
A human-computer cooperative system for effective high dimensional clustering
Abstract
High dimensional data has always been a challenge for clustering algorithms because of the inherent sparsity of the points, Therefore, techniques have recently been proposed to find dusters in hidden subspaces of the data. However, since the behavior of the data may vary considerably in different subspaces, it is often difficult to define the notion of a cluster with the use of simple mathematical formalizations. In fact, the meaningfulness and definition of a cluster is best characterized with the use of human intuition. In this paper, we propose a system which performs high dimensional clustering by effective cooperation between the human and the computer. The complex task of cluster creation is accomplished by a combination of human intuition and the computational support provided by the computer. The result is a system which leverages the best abilities of both the human and the computer in order to create very meaningful sets of clusters in high dimensionality.