Performance measurement and data base design
Alfonso P. Cardenas, Larry F. Bowman, et al.
ACM Annual Conference 1975
It is shown that for any fixed number of variables, linear-programming problems with n linear inequalities can be solved deterministically by n parallel processors in sublogarithmic time. The parallel time bound (counting only the arithmetic operations) is O((loglog n)d), where d is the number of variables. In the one-dimensional case, this bound is optimal. If we take into account the operations needed for processor allocation, the time bound is O((loglog n)d+c), where c is an absolute constant.
Alfonso P. Cardenas, Larry F. Bowman, et al.
ACM Annual Conference 1975
William Hinsberg, Joy Cheng, et al.
SPIE Advanced Lithography 2010
Liat Ein-Dor, Y. Goldschmidt, et al.
IBM J. Res. Dev
Ruixiong Tian, Zhe Xiang, et al.
Qinghua Daxue Xuebao/Journal of Tsinghua University