About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Transactions on Magnetics
Paper
29.5-Gb/in2 recording areal density on barium ferrite tape
Abstract
The recording performance of a new magnetic tape based on ultra-fine, perpendicularly-oriented BaFe particles was investigated. Specifically, using a low lateral tape motion demonstration platform, a new servo pattern written on the advanced perpendicularly oriented BaFe medium, a new low friction head technology, a novel synchronous servo channel design, and advanced servo control concepts, we were able to demonstrate a record closed-loop track-follow performance with a 23.4 nm standard deviation of position-error signal, roughly one order of magnitude better than in current tape products. In addition, using read back waveforms captured on the same advanced perpendicularly oriented BaFe medium with a 0.2-μm} -wide data reader, we demonstrated write/read performance at 518 kbpi using advanced noise-predictive maximum likelihood (NPML) detection schemes. Combining these two results, we estimate that the new medium can support an areal recording density of up to 29.5 Gb/in2. This result demonstrates the scalability and extendability of tape technology using low-cost particulate media. © 2006 IEEE.