About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Electron Device Letters
Paper
Vertically self-aligned buried junction formation for ultrahigh-density DRAM applications
Abstract
In this letter, we present a novel junction integration scheme that enables vertical transistors to have high performance, low leakage, and easy scalability. Controlled solid-phase diffusion is used to form the vertically self-aligned buried strap junction of the vertical transistor. The electric field at the capacitor node junction is carefully optimized by creating a graded junction profile, resulted from a combination of out-diffusion from Arsenic-doped poly-silicon and Phosphorus-doped oxide. The Phosphorus-doped oxide serves as the dopant source for the vertical lightly doped drain, as well as the spacer for the high dose junctions. Integration of the self-aligned junctions into a vertical transistor dynamic random access memory (DRAM) process flow is presented. Significant improvement in the retention characteristics of a 256-Mb DRAM product confirms the applicability of this newly developed junction integration scheme for future DRAM generations.