About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEDM 2021
Conference paper
Temperature sensitivity of analog in-memory computing using phase-change memory
Abstract
Can analog in-memory accelerators provide sufficient accuracy for AI applications under ambient temperature variations? Here, we answer this question by focusing on phase-change memory (PCM)-based deep learning acceleration. We investigate for the first time the impact of temperature on multi-level PCM conductance states used to store the synaptic weights. First, we characterize the temperature and drift behavior of 10,000 doped Ge2Sb2Te5 (GST)-based mushroom PCM. Next, we present a model which can capture this behavior and faithfully reproduce the complete time-temperature dependence of the conductance states. Finally, we experimentally study the sensitivity of various network architectures to ambient temperature variations. For this, we employ a multi-layer perceptron, a convolutional neural network and a recurrent neural network, with more than 1.1M PCM weights. We demonstrate that a simple array-level scaling could correct for the conductance shift due to temperature and drift and prevent any significant accuracy drop for all the studied networks during inference.