About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Langmuir
Paper
Stress at the solid-liquid interface of self-assembled monolayers on gold investigated with a nanomechanical sensor
Abstract
The interfacial stress of self-assembled monolayers on Au exposed to buffers of various pH values and ionic strengths is measured as a function of the liquid environment. The method uses two thiol-modified Au-covered silicon cantilevers and a differential method to compensate for thermal and refractive index changes of the liquid environment. Increasing pH and ionic strength leads to a bending, i.e., a compressive stress, of a mercaptohexadecanoic acid-covered cantilever compared to a hexadecanethiol-covered reference cantilever. In addition, the interfacial stress is found to be highly dependent on the surface density of the ionizeable mercaptohexadecanoic acid molecules when they are coadsorbed with hexadecanethiols on Au.