About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE TCAS-II
Paper
Restoration of Controllable Hysteresis in Partially Depleted SOI CMOS Schmitt Trigger Circuits
Abstract
This paper presents a new circuit technique to alleviate the uncontrollable floating-body-induced hysteretic component present in the transfer characteristics of voltage-mode CMOS Schmitt trigger circuits in a partially depleted silicon-on-insulator technology. This technique integrates a successive switching threshold shift mechanism with the systematic body contact scheme, resulting in improved noise immunity and well-defined hysteresis behavior for the Schmitt trigger circuit that is suitable for use as a low-noise receiver, level shifter, waveform-reshaping circuit, and delay element in very large-scale integrated applications. © 2004, The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.