About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IJCAI 2011
Conference paper
Mining longitudinal network for predicting company value
Abstract
Real-world social networks are dynamic in nature. Companies continue to collaborate, align strategically, acquire, and merge over time, and receive positive/negative impact from other companies. Consequently, their performance changes with time. If one can understand what types of network changes affect a company's value, he/she can predict the future value of the company, grasp industry innovations, and make business more successful. However, it often requires continuous records of relational changes, which are often difficult to track for companies, and the models of mining longitudinal network are quite complicated. In this study, we developed algorithms and a system to infer large-scale evolutionary company networks from public news during 1981-2009. Then, based on how networks change over time, as well as the financial information of the companies, we predicted company profit growth. This is the first study of longitudinal network-mining-based company performance analysis in the literature.