About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B - CMMP
Paper
Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides
Abstract
We report on systematic experimental mapping of the transmission properties of two-dimensional silicon-on-insulator photonic crystal waveguides for a broad range of hole radii, slab thicknesses, and waveguide lengths for both TE and TM polarizations. Detailed analysis of numerous spectral features allows a direct comparison of experimental data with three-dimensional plane-wave and finite-difference time-domain calculations. We find that the bandwidth for low-loss propagation completely vanishes for structural parameters where the photonic band gap is maximized. Our results demonstrate that in order to maximize the bandwidth of low-loss waveguiding the hole radius must be significantly reduced. While the photonic band gap considerably narrows, the bandwidth of low-loss propagation in PhC waveguides is increased up to 125nm with losses as low as 8±2dB/cm. © 2005 The American Physical Society.