About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Kinetics of laser-induced chemical vapor deposition of gold
Abstract
Rates of photothermal gold deposition onto alumina substrates heated by a focused argon-ion laser beam were measured by determining the time required for deposits to grow through the focal spot of a HeNe laser probe beam directed parallel to the substrate. Deposition rates from 0.25 to 6 μm/s were measured for deposits with heights ranging from 5 to 100 μm. Rates of gold deposition using dimethyl gold hexafluoroacetylacetonate as a precursor depend linearly on the gold precursor partial pressure and for a wide variety of conditions do not depend on the laser power or focal spot diameter. A theory is presented to describe reactant mass transfer-controlled deposition with and without buffer gas. Comparison of measured with calculated growth rates showed that gold deposition rates using dimethyl gold hexafluoroacetylacetonate as a precursor were transport limited for the conditions studied. Theory and experiment also showed that the deposition rate decreases inversely with increasing buffer gas pressure above a critical pressure.