About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
VLSI Technology 2019
Conference paper
Inference of Long-Short Term Memory networks at software-equivalent accuracy using 2.5M analog Phase Change Memory devices
Abstract
We report accuracy for forward inference of long-short-term-memory (LSTM) networks using weights programmed into the conductances of > 2.5M phase-change memory (PCM) devices. We demonstrate strategies for software weight-mapping and programming of hardware analog conductances that provide accurate weight programming despite significant device variability. Inference accuracy very close to software-model baselines is achieved on several language modeling tasks.