About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CICC 2013
Conference paper
Indirect performance sensing for on-chip analog self-healing via Bayesian model fusion
Abstract
On-chip analog self-healing requires low-cost sensors to accurately measure various performance metrics. In this paper we propose a novel approach of indirect performance sensing based upon Bayesian model fusion (BMF) to facilitate inexpensive-yet-accurate on-chip performance measurement. A 25GHz differential Colpitts voltage-controlled oscillator (VCO) designed in a 32nm CMOS SOI process is used to validate the proposed indirect performance sensing and self-healing methodology. Our silicon measurement results demonstrate that the parametric yield of the VCO is improved from 0% to 69.17% for a wafer after the proposed self-healing is applied. © 2013 IEEE.