About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Applied Physics
Paper
Field and bias dependence of high-frequency magnetic noise in MgO-based magnetic tunnel junctions
Abstract
We present room-temperature measurements of high-frequency magnetization fluctuation (mag noise) in MgO-based nanopillar magnetic tunnel junctions (MTJs) biased with a direct current (dc). In the frequency range of 1-13 GHz, double mag-noise peaks are observed for some MTJs while others only show a single mag-noise peak. The in-plane field dependence of the mag-noise peak frequency is consistent with the Kittel formula. For all MTJs measured, the bias-dependent shift in the mag-noise peak frequency has a pronounced asymmetry. In addition, we find nonmonotonic variations in peak linewidth as a function of the external in-plane magnetic field and of the dc bias current. These suggest the possible involvement of nonmacrospin modes in spin-torque-dependent thermal mag-noise generation. © 2009 American Institute of Physics.