About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Applied Physics
Paper
Electronic structure and luminescence processes in In1-xGa xP alloys
Abstract
The conduction-band structure of In1-xGaxP has been studied by cathodoluminescence (CL) and photoluminescence (PL). An accurate determination of the direct energy gap (± 10 meV) as a function of alloy composition (Δx = ± 0.025) is achieved by the simultaneous electron probe microanalysis of alloy composition and spectral measurements of the CL excited by the microprobe electron beam. Similar measurements in InP, GaAs, and GaAs1-xPx, as well as absorption edge measurements and the temperature dependence of the PL spectrum, indicate that essentially free-carrier recombination is observed in the PL and CL measurements of lightly n-type In1-xGaxP at 300°K. These results indicate that the "cross over" between the direct and indirect conduction-band minima occurs at the composition x = 0.74 and energy gap = 2.26 eV. © 1971 The American Institute of Physics.