C.A. Micchelli, W.L. Miranker
Journal of the ACM
One of the main challenges in real-world reinforcement learning is to learn successfully from limited training samples. We show that in certain settings, the available data can be dramatically increased through a form of multi-task learning, by exploiting an invariance property in the tasks. We provide a theoretical performance bound for the gain in sample efficiency under this setting. This motivates a new approach to multi-task learning, which involves the design of an appropriate neural network architecture and a prioritized task-sampling strategy. We demonstrate empirically the effectiveness of the proposed approach on two real-world sequential resource allocation tasks where this invariance property occurs: financial portfolio optimization and meta federated learning.
C.A. Micchelli, W.L. Miranker
Journal of the ACM
Saurabh Paul, Christos Boutsidis, et al.
JMLR
Joxan Jaffar
Journal of the ACM
Cristina Cornelio, Judy Goldsmith, et al.
JAIR