About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IGARSS 2024
Conference paper
CHANGEBIND: A HYBRID CHANGE ENCODER FOR REMOTE SENSING CHANGE DETECTION
Abstract
Change detection (CD) is a fundamental task in remote sensing (RS) which aims to detect the semantic changes between the same geographical regions at different time stamps. Existing convolutional neural networks (CNNs) based approaches often struggle to capture long-range dependencies. Whereas recent transformer-based methods are prone to the dominant global representation and may limit their capabilities to capture the subtle change regions due to the complexity of the objects in the scene. To address these limitations, we propose an effective Siamese-based framework to encode the semantic changes occurring in the bi-temporal RS images. The main focus of our design is to introduce a change encoder that leverages local and global feature representations to capture both subtle and large change feature information from multi-scale features to precisely estimate the change regions. Our experimental study on two challenging CD datasets reveals the merits of our approach and obtains state-of-the-art performance.