About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ESSCIRC 2015
Conference paper
A 3.6pJ/b 56Gb/s 4-PAM receiver with 6-Bit TI-SAR ADC and quarter-rate speculative 2-tap DFE in 32 nm CMOS
Abstract
This paper describes the implementation of a 4-level pulse-amplitude-modulation (4-PAM) receiver consisting of a 6-bit time-interleaved successive-approximation analog-to-digital converter (TI-SAR ADC), followed by a fully digital speculative 2-tap decision-feedback equalizer (DFE) operating at one-fourth of the modulation rate. The receiver, implemented in an experimental chip fabricated in 32 nm SOI CMOS, is designed to recover data at 56Gb/s over a channel with an attenuation of 11 dB at 14 GHz. The power consumption of the receiver is 202.7 mW at a supply of 1.2 V, achieving an overall energy efficiency of 3.62 pJ/b. The DFE along with area-optimized register arrays and memory-control buffers occupies an area of 0.154×0.169 mm2. Experimental results demonstrating a BER<10 8 are obtained using a (27 1)-bit pseudo-random binary sequence (PRBS-7).