Looking under an electron microscope at the hair samples, they could see that the holes the laser created were free from any burn marks, or what Wynne called “collateral damage.” A picture of one of Srinivasan’s etched hairs has since been on several covers of books on laser refractive surgery, Wynne said.
Forty years ago this week, a group of IBM researchers relied on leftover Thanksgiving turkey to help uncover the process that would evolve into LASIK laser eye surgery.
Even with the promising results, the group was still hesitant to shine the laser on anyone’s skin. But thankfully, on this Thanksgiving, not everyone had cleaned their plates at Srinivasan’s dinner table. He brought in leftovers to the lab the day after Thanksgiving and decided to irradiate a piece of cartilage still attached to a turkey bone. The laser again made a clean, burn-free incision, and over the next week or so, Srinivasan and his colleague Sam Blum tested out the laser on other pieces of turkey cartilage.
After collecting their results, they showed Wynne what they had found. He attempted to recreate the findings with a different type of laser, a Q-switched, frequency doubled The neodymium:yttrium-aluminium-garnet-(Nd:YAG) laser is capable of producing a near-infrared wavelength, used for material etching and some medical procedures.neodymium (Nd) YAG laser that emitted green light, and failed, with that laser burning and charring the sample of cartilage. “That for me was the moment of discovery — we had a new form of laser surgery from our cooked turkey cartilage,” Wynne said.
Over the next few weeks, the three scientists sat down to write an invention disclosure, which is the first step in applying for a patent on a novel invention. They tried to think of every possible use case for what they’d uncovered, and wrote the invention disclosure in such a way as to cover all human and animal tissue.
Over the intervening year, the group decided to test the laser on themselves, and Wynne put himself first on the line. He was still an avid Wynne actually lost to an extremely talented youngster named Arthur Ashe at the Eastern Clay Courts Championship in Hackensack, N.J., in the summer of 1962, before realizing a career in physics was more likely than winning a major tennis tournament.tennis player at the time, and being a righty, he stuck his right hand in his pocket and exposed his left pinky to the laser. The sensation, he said, was similar to blowing a puff of air on his finger. “There was no heat, no pain itself,” Wynne said, with the group realizing they might have a new form of painless surgery on their hands. But they still hadn’t been thinking about eye surgery specifically when their patent application was filed in 1982.
Srinivasan, Wynne, and Blum wrote up their findings in a paper, which was published in Laser Focus. Srinivasan was invited to speak at the CLEO Conference on lasers in May, 1983, where two ophthalmologists from Columbia University were in attendance, heard Srinivasan’s presentation and read the team’s paper. They hypothesized that the excimer laser could be used to reshape an eye’s cornea without creating any collateral damage. One of them visited the Watson Research Center in July, bringing along an enucleated calf eye to test the laser on, and found that it could make precise, clean incisions in the cornea.
Over the next few years, the technology was further refined, and the first corrective laser eye surgery on a sighted person took place in March, 1988. The FDA first approved a system for PRK eye surgery, a less invasive form of corrective eye surgery, in 1995, and approved a system for LASIK eye surgery in 1997.
Since 1990, some 60 million people across the world have had their eyesight corrected by laser surgery, including Wynne’s own son. When Wynne, Srinivasan, and Blum (who had recently passed away) were awarded the National Medal of Technology and Innovation by President Obama in 2013, they learned that even First Lady Michelle Obama had undergone laser refractive surgery.
IBM sold the patent that Wynne’s team had worked on in 1997, but he has continued to research the potential of excimer lasers in surgery. He focuses now on what he calls a “smart scalpel,” publishing a paper on his research1 in 2018. The aim is to be able to remove dead and damaged tissue from burn victims, especially children, without any damage to the underlying and adjacent viable tissue.
The next time you’re being scolded at the Thanksgiving dinner table to stop playing with your food, you should remind everyone that it might just lead to the next major scientific breakthrough. Or maybe just some charred turkey.
Prasad, A., Sawicka, K., Pablo, K., et al. ArF excimer laser debrides burns without destruction of viable tissue: A pilot study. ScienceDirect. Volume 44, Issue 3, 2018, Pages 589-595, ISSN 0305-4179. ↩