About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 2007
Conference paper
The impact of ASR on speech-to-speech translation performance
Abstract
This paper reports on experiments to quantify the impact of Automatic Speech Recognition (ASR) in general and discriminatively trained ASR in particular on the Machine Translation (MT) performance. The Minimum Phone Error (MPE) training method is employed for building the discriminative ASR acoustic models and a Weighted Finite State Transducer (WFST) based method is used for MT. The experiments are performed on a two-way English/Dialeetal-Arabic speech-to-speech (S2S) translation task in the military/medical domain. We demonstrate the relationship between ASR and MT performance measured by BLEU and human judgment for both directions of the translation. Moreover, we question the use of BLEU metric for assessing the MT quality, present our observations and draw some conclusions. © 2007 IEEE.