About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Applied Physics
Paper
The effect of the flow of silane on the properties of a-Si:H deposited by concentric-electrode radio frequency glow-discharge
Abstract
High band gap, device-quality, hydrogenated amorphous silicon (a-Si:H) was deposited from silane at room temperature using concentric-electrode plasma-enhanced chemical vapor deposition (CE-PECVD). Increasing the flow of silane from 15 to 99 sccm resulted in a continuous increase of the optical band gap, Eopt, from 1.7 to 2.1 eV, and changed the dominant bonding configuration from Si-H to Si-H2. The total hydrogen concentration as determined from the integrated absorption of the SiHx stretching bond increased from 7% to 15%. As Eopt varied between 1.7 and 2.1 eV, the photoconductivity, σph, decreased from 10-5 to 10-7 Ω-1 cm-1 and the dark conductivity, σd, dropped from 10-10 to 10-14 Ω-1 cm-1 (σph and σd measured at room temperature after a 1 h anneal at 200°C). These results are superior to those obtained using a-SiC:H alloys deposited under comparable conditions (i.e., without hydrogen dilution). After annealing, three different conduction paths were identified and correlate with the silicon-hydrogen bonding configuration. The photosensitivity of high band gap a-Si:H films, σph/σd, follows Slobodin's rule for a-SiGe:H alloys. High band gap a-Si:H deposited by CE-PECVD has significant potential to challenge the role of a-SiC:H as the choice material for films with 1.7 ≲ Eopt ≲ 2.1 eV.