About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Study of the undercooling of Pb-free, flip-chip solder bumps and in situ observation of solidification process
Abstract
The undercooling of flip-chip Pb-free solder bumps was investigated by differential scanning calorimetry (DSC) to understand the effects of solder composition and volume, with and without the presence of an under bump metallurgy (UBM). A large amount of the undercooling (as large as 90 °C) was observed with Sn-rich, flip-chip size solder bumps sitting in a glass mold, while the corresponding undercooling was significantly reduced in the presence of a wettable UBM surface. In addition, the solidification of an array of individual solder bumps was monitored in situ by a video imaging technique during both heating-up and cooling-down cycles. Data obtained by the optical imaging method were used to complement the DSC thermal measurements. A random solidification of the array of bumps was demonstrated during cooling, which also spans a wide temperature range of 40-80 °C. In contrast, an almost simultaneous melting of the bumps was observed during heating. © 2007 Materials Research Society.