About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Physics Letters
Paper
Silicon nanowire tunneling field-effect transistors
Abstract
We demonstrate the implementation of tunneling field-effect transistors (TFETs) based on silicon nanowires (NWs) that were grown using the vapor-liquid-solid growth method. The Si NWs contain p-i- n+ segments that were achieved by in situ doping using phosphine and diborane as the n - and p -type dopant source, respectively. Electrical measurements of the TFETs show a band-to-band tunneling branch in the transfer characteristics. Furthermore, an increase in the on-state current and a decrease in the inverse subthreshold slope upon reducing the gate oxide thickness are measured. This matches theoretical calculations using a Wenzel Kramer Brillouin approximation with nanowire diameter and oxide thickness as input parameters. © 2008 American Institute of Physics.