About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Japanese Journal of Applied Physics
Paper
Negative differential conductivity and carrier heating in gate-all-around Si nanowire FETs and its impact on CMOS logic circuits
Abstract
In this paper, we present a fully-coupled and self-consistent continuum based three-dimensional numerical analysis to understand hot carrier and device self-heating effects for device-circuit co-optimization in Si gate-all-around nanowire FETs. We employ three-moment based energy transport formulations and two-dimensional quantum confinement effects to demonstrate negative differential conductivity in Si nanowire FETs and assess its impact on a CMOS inverter and three-stage ring oscillator. We show that strong two-dimensional quantum confinement yields volume inversion conditions in Si nanowire FETs and surround gate geometry enables better short-channel effect control. We find that hot carrier and self-heating effects can degrade ON-state current in Si nanowire FETs and severely limit the logic circuit performance due to the introduction of higher signal propagation delays. © 2014 The Japan Society of Applied Physics.