About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICML 2010
Conference paper
Learning temporal causal graphs for relational time-series analysis
Abstract
Learning temporal causal graph structures from multivariate time-series data reveals important dependency relationships between current observations and histories, and provides a better understanding of complex systems. In this paper, we examine learning tasks where one is presented with multiple multivariate time-series, as well as a relational graph among the different time-series. We propose an L1 regularized hidden Markov random field regression framework to leverage the information provided by the relational graph and jointly infer more accurate temporal causal structures for all time-series. We test the proposed model on climate modeling and cross-species microarray data analysis applications. Copyright 2010 by the author(s)/owner(s).