Eduardo Castro, Pablo Polosecki, et al.
NeuroImage: Clinical
One of the challenges in modeling cognitive events from electroencephalogram (EEG) data is finding representations that are invariant to inter- and intra-subject differences, as well as to inherent noise associated with EEG data collection. Herein, we propose a novel approach for learning such representations from multichannel EEG time-series, and demonstrate its advantages in the context of mental load classification task. First, we transform EEG activities into a sequence of topology-preserving multi-spectral images, as opposed to standard EEG analysis techniques that ignore such spatial information. Next, we train a deep recurrent-convolutional network inspired by state-of-the-art video classification techniques to learn robust representations from the sequence of images. The proposed approach is designed to preserve the spatial, spectral, and temporal structure of EEG which leads to finding features that are less sensitive to variations and distortions within each dimension. Empirical evaluation on the cognitive load classification task demonstrated significant improvements in classification accuracy over current state-of-the-art approaches in this field.
Eduardo Castro, Pablo Polosecki, et al.
NeuroImage: Clinical
Gaurav Chandalia, Irina Rish
IMC 2007
Irina Rish, Gerald Tesauro
IM 2007
Sahil Garg, Irina Rish, et al.
IJCAI 2017