About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IJCAI 2017
Conference paper
Neurogenesis-inspired dictionary learning: Online model adaption in a changing world
Abstract
We address the problem of online model adaptation when learning representations from non-stationary data streams. Specifically, we focus here on online dictionary learning (i.e. sparse linear autoencoder), and propose a simple but effective online modelselection approach involving "birth" (addition) and "death" (removal) of hidden units representing dictionary elements, in response to changing inputs; we draw inspiration from the adult neurogenesis phenomenon in the dentate gyrus of the hippocampus, known to be associated with better adaptation to new environments. Empirical evaluation on real-life datasets (images and text), as well as on synthetic data, demonstrates that the proposed approach can considerably outperform the state-of-art non-adaptive online sparse coding of [Mairal et al., 2009] in the presence of non-stationary data. Moreover, we identify certain data- and model properties associated with such improvements.