Control Flow Operators in PyTorch
Yidi Wu, Thomas Bohnstingl, et al.
ICML 2025
Generative feature matching network (GFMN) is an approach for training implicit generative models for images by performing moment matching on features from pre-trained neural networks. In this paper, we present new GFMN formulations that are effective for sequential data. Our experimental results show the effectiveness of the proposed method, SeqGFMN, for three distinct generation tasks in English: unconditional text generation, classconditional text generation, and unsupervised text style transfer. SeqGFMN is stable to train and outperforms various adversarial approaches for text generation and text style transfer.
Yidi Wu, Thomas Bohnstingl, et al.
ICML 2025
Robert Farrell, Rajarshi Das, et al.
AAAI-SS 2010
Michael Glass, Alfio Gliozzo, et al.
ACL 2020
Chen-chia Chang, Wan-hsuan Lin, et al.
ICML 2025