Publication
ACL 2020
Conference paper

Span Selection Pre-training for Question Answering

Download paper

Abstract

BERT (Bidirectional Encoder Representations from Transformers) and related pre-trained Transformers have provided large gains across many language understanding tasks, achieving a new state-of-the-art (SOTA). BERT is pretrained on two auxiliary tasks: Masked Language Model and Next Sentence Prediction. In this paper we introduce a new pre-training task inspired by reading comprehension to better align the pre-training from memorization to understanding. Span Selection PreTraining (SSPT) poses cloze-like training instances, but rather than draw the answer from the model’s parameters, it is selected from a relevant passage. We find significant and consistent improvements over both BERTBASE and BERTLARGE on multiple Machine Reading Comprehension (MRC) datasets. Specifically, our proposed model has strong empirical evidence as it obtains SOTA results on Natural Questions, a new benchmark MRC dataset, outperforming BERTLARGE by 3 F1 points on short answer prediction. We also show significant impact in HotpotQA, improving answer prediction F1 by 4 points and supporting fact prediction F1 by 1 point and outperforming the previous best system. Moreover, we show that our pre-training approach is particularly effective when training data is limited, improving the learning curve by a large amount.

Date

05 Jul 2020

Publication

ACL 2020

Authors

Tags

Resources

Share