About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Mathematical Programming
Paper
Lattice closures of polyhedra
Abstract
Given P⊂ Rn, a mixed-integer set PI= P∩ (Zt× Rn-t), and a k-tuple of n-dimensional integral vectors (π1, … , πk) where the last n- t entries of each vector is zero, we consider the relaxation of PI obtained by taking the convex hull of points x in P for which π1Tx,…,πkTx are integral. We then define the k-dimensional lattice closure of PI to be the intersection of all such relaxations obtained from k-tuples of n-dimensional vectors. When P is a rational polyhedron, we show that given any collection of such k-tuples, there is a finite subcollection that gives the same closure; more generally, we show that any k-tuple is dominated by another k-tuple coming from the finite subcollection. The k-dimensional lattice closure contains the convex hull of PI and is equal to the split closure when k= 1. Therefore, a result of Cook et al. (Math Program 47:155–174, 1990) implies that when P is a rational polyhedron, the k-dimensional lattice closure is a polyhedron for k= 1 and our finiteness result extends this to all k≥ 2. We also construct a polyhedral mixed-integer set with n integer variables and one continuous variable such that for any k< n, finitely many iterations of the k-dimensional lattice closure do not give the convex hull of the set. Our result implies that t-branch split cuts cannot give the convex hull of the set, nor can valid inequalities from unbounded, full-dimensional, convex lattice-free sets.