Two dimensional lattice-free cuts and asymmetric disjunctions for mixed-integer polyhedra
Abstract
In this paper, we study the relationship between 2D lattice-free cuts, the family of cuts obtained by taking two-row relaxations of a mixed-integer program (MIP) and applying intersection cuts based on maximal lattice-free sets in ℝ 2, and various types of disjunctions. Recently Li and Richard (2008), studied disjunctive cuts obtained from t-branch split disjunctions of mixed-integer sets (these cuts generalize split cuts). Balas (Presentation at the Spring Meeting of the American Mathematical Society (Western Section), San Francisco, 2009) initiated the study of cuts for the two-row continuous group relaxation obtained from 2-branch split disjunctions. We study these cuts (and call them cross cuts) for the two-row continuous group relaxation, and for general MIPs. We also consider cuts obtained from asymmetric 2-branch disjunctions which we call crooked cross cuts. For the two-row continuous group relaxation, we show that unimodular cross cuts (the coefficients of the two split inequalities form a unimodular matrix) are equivalent to the cuts obtained from maximal lattice-free sets other than type 3 triangles. We also prove that all 2D lattice-free cuts and their S-free extensions are crooked cross cuts. For general mixed integer sets, we show that crooked cross cuts can be generated from a structured three-row relaxation. Finally, we show that for the corner relaxation of an MIP, every crooked cross cut is a 2D lattice-free cut. © 2011 Springer and Mathematical Optimization Society.