Int. J. Mol. Sci.

K-mer analyses reveal different evolutionary histories of alpha, beta, and gamma papillomaviruses

View publication


Papillomaviruses (PVs) are a heterogeneous group of DNA viruses that can infect fish, birds, reptiles, and mammals. PVs infecting humans (HPVs) phylogenetically cluster into five genera (Alpha-, Beta-, Gamma-, Mu-and Nu-PV), with differences in tissue tropism and carcinogenicity. The evolutionary features associated with the divergence of Papillomaviridae are not well understood. Using a combination of k-mer distributions, genetic metrics, and phylogenetic algorithms, we sought to evaluate the characteristics and differences of Alpha-, Beta-and Gamma-PVs constituting the majority of HPV genomes. A total of 640 PVs including 442 HPV types, 27 non-human primate PV types, and 171 non-primate animal PV types were evaluated. Our analyses revealed the highest genetic diversity amongst Gamma-PVs compared to the Alpha and Beta PVs, suggesting reduced selective pressures on Gamma-PVs. Using a sequence alignment-free trimer (k = 3) phylogeny algorithm, we reconstructed a phylogeny that grouped most HPV types into a monophyletic clade that was further split into three branches similar to alignment-based classifications. Interestingly, a subset of low-risk Alpha HPVs (the species Alpha-2, 3, 4, and 14) split from other HPVs and were clustered with non-human primate PVs. Surprisingly, the trimer-constructed phylogeny grouped the Gamma-6 species types originally isolated from the cervicovaginal region with the main Alpha-HPV clade. These data indicate that characterization of papillomavirus heterogeneity via orthogonal approaches reveals novel insights into the biological understanding of HPV genomes.