About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CICC 2007
Conference paper
Integrated inductor actively engaging metal filling rules
Abstract
This paper reports a new strip-patterned integrated inductor that actively engages metal filling rules leading to reduced manufacturing cost and process-induced uncertainties while simultaneously maintaining state-of-the-art performance. The strip-patterned inductor consists of parallel horse shoeshape metal lines in the foot print of a single-line inductor. It observes back-end-of-line (BEOL) metal density rules by design, and it is not subject to a post-layout patterning to enforce metal density on a large piece of metal. As a result, better model-to-hardware correlation (MHC) is expected. The new inductor structure is backed by experimental and simulated results that demonstrate the design methodology in the presence of process uncertainties typically not known to the circuit designer. © 2007 IEEE.