About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
PacificVis 2009
Conference paper
HiMap: Adaptive visualization of large-scale online social networks
Abstract
Visualizing large-scale online social network is a challenging yet essential task. This paper presents HiMap, a system that visualizes it by clustered graph via hierarchical grouping and summarization. HiMap employs a novel adaptive data loading technique to accurately control the visual density of each graph view, and along with the optimized layout algorithm and the two kinds of edge bundling methods, to effectively avoid the visual clutter commonly found in previous social network visualization tools. HiMap also provides an integrated suite of interactions to allow the users to easily navigate the social map with smooth and coherent view transitions to keep their momentum. Finally, we confirm the effectiveness of HiMap algorithms through graph-travesal based evaluations. ©2009 IEEE.