About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ACS Macro Letters
Paper
Highly aligned block copolymer thin films by synergistic coupling of static graphoepitaxy and dynamic thermal annealing fields
Abstract
Directed self-assembly of cylinder forming block copolymer (c-BCP) thin films via a dynamic thermal field on multidimensional symmetric graphoepitaxy channels is reported. A synergy of dynamic thermal and static boundary fields induces highly aligned c-BCP cylinders inside the channels with a power law dependence of orientational order parameter f, on trench width, f ∼ d -0.3, analogous to dual-field alignment of semiconducting metals and liquid crystals on graphoepitaxy surfaces, f′ ∼ d-1. Static thermal annealing of identical films in a vacuum oven for several days fails to produce comparable results. Furthermore, we demonstrate global c-BCP cylinder alignment over mesas and trenches by tuning the synergy between the dynamic thermal field and asymmetry of the graphoepitaxy static field. © 2013 American Chemical Society.