About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Japanese Journal of Applied Physics
Paper
High-accuracy defect-free X-Ray mask technology
Abstract
There are many material and processing options for building highly accurate defect-free X-ray masks that meet the 0.25-µ m and smaller lithography groundrules. IBM's path and rationale for reducing the key mask parameters of image size, image placement and defects is covered. For image size resolution and control, high voltage e-beam lithography (greater then 50 kV) is the preferred technique for X-ray masks. For tighter image placement control, special writing schemes that reduce the e-beam lithography systematic and random placement errors must be used. Special absorber electroplating conditions and thermal controls were implemented to control process-induced distortion. For tight defect control, identifying and eliminating sources of defect is key. Clearly, for IBM, most of the defect sources were process rather than foreign material related. Our defect reduction work has resulted in the fabrication of a fully functional 64-Mb DRAM (single chip) mask. © 1994 IOP Publishing Ltd.